翻訳と辞書
Words near each other
・ Spectral (film)
・ Spectral abscissa
・ Spectral acceleration
・ Spectral analysis
・ Spectral Associates
・ Spectral asymmetry
・ Spectral atlas
・ Spectral band replication
・ Spectral bands
・ Spectral bat
・ Spectral centroid
・ Spectral clustering
・ Spectral color
・ Spectral component
・ Spectral concentration problem
Spectral correlation density
・ Spectral Database for Organic Compounds
・ Spectral density
・ Spectral density estimation
・ Spectral Dusk
・ Spectral edge frequency
・ Spectral efficiency
・ Spectral element method
・ Spectral energy distribution
・ Spectral envelope
・ Spectral estimation of multidimensional signals
・ Spectral evidence
・ Spectral expansion solution
・ Spectral flatness
・ Spectral flux


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spectral correlation density : ウィキペディア英語版
Spectral correlation density
The spectral correlation density, sometimes also called the cyclic spectral density or spectral correlation function, is a function that describes the cross-spectral density of all pairs of frequency-shifted versions of a time-series. The spectral correlation density applies only to cyclostationary processes because stationary processes do not exhibit spectral correlation. Spectral correlation has been used both in signal detection and signal classification. The spectral correlation density is closely related to each of the bilinear time-frequency distributions, but is not considered one of Cohen's class of distributions.
== Definition ==
The cyclic auto-correlation function of a time-series x(t) is calculated as follows:
R_x^\alpha(\tau) = \int_^\infty x\left(t - \frac \tau 2\right)x^
*\left(t + \frac \tau 2 \right) e^ \, dt
where (
*) denotes complex conjugation. By the Wiener–Khinchin theorem, the spectral correlation density is then:
S_x^\alpha(f) = \int_^\infty R_x^\alpha(\tau) e^ \, d\tau

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spectral correlation density」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.